

Announcement SoSe 2017 Lecture in Mathematical Finance

Partial Differential Equations in Finance

Prof. Dr. Kathrin Glau

Area / Modulnr.:	Mathematical Finance / MA5720
Course Structure:	Lecture: 2h Exercises: 2h
Content:	Numerical techniques are widely used in mathematical finance and financial en- gineering, since most problems arising in this context do not lead to explicit for- mulas. We concentrate on PDE methods for option pricing. The Black-Scholes PDE serves as a basic equation to study numerical, application-oriented as well as theoretical aspects, such as -Feynman-Kac formula -Different types of options such as European, barrier and lookback options -Weak formulation as parabolic equation in Hilbert spaces and basic theoretical results (e.g. existence and regularity) -Galerkin methods: finite elements and basic convergence results
Audience:	MSc Mathematical Finance and Actuarial Science
Prerequisite:	MA4405 (Stochastic Analysis) or MA3702 (Continuous Time Finance), basic skills in Matlab
Literature:	 Norbert Hilber, Oleg Reichmann, Christoph Schwab, Christoph Winter (2013): Computational Methods for Quantitative Finance, Springer Finance Rüdiger Seydel (2009): Tools for Computational Finance, Springer Yves Achdou and Olivier Pironneau (2005): Computational Methods for Option Pricing, SIAM series in Applied Math Dietrich Braess (2007): Finite Elements: Theory, fast solvers and applications in elasticity theory, Cambridge University Press Lawrence Evans (2010): Partial Differential Equations, American Mathematical Society
Certificate:	Exam or Oral Exam, 6 CP
Location and Time:	see TUMonline
Exercises:	see TUMonline