Dr. Johannes Pfefferer, AkadR


Foto von Johannes Pfefferer

Technische Universität München

Lehrstuhl für Optimalsteuerung (Prof. Vexler)

seit Oktober 2023 an der Universität der Bundeswehr

Akademische Ausbildung
Juni 2014 Dr. rer. nat. (summa cum laude), Universität der Bundeswehr München
Okt. 2007 Dipl.-Tech. Math. (mit Auszeichnung), Technische Universität München
Okt. 2001 - Okt. 2007 Studium der Technomathematik, Technische Universität München
Beruflicher Werdegang
Sept. 2020 - Sept. 2023 Akademischer Rat an der Technischen Universität München
Mai 2019 - Sept. 2020 Akademischer Rat auf Zeit an der Technischen Universität München
Jan. 2016 - Apr. 2019 Wissenschaftlicher Mitarbeiter an der Technischen Universität München
Okt. 2015 - Dez. 2015 Wissenschaftlicher Mitarbeiter an der George Mason University, Fairfax, Virginia, USA
Okt. 2007 - Sept. 2015 Wissenschaftlicher Mitarbeiter an der Universität der Bundeswehr München
Okt. 2006 - Juli 2007 Studentische Hilfskraft an der Technischen Universität München
Jan. 2006 - Juni 2006 Werkstudent bei der BMW M GmbH
März 2005 - Sept. 2005 Werkstudent bei der BMW M GmbH
Auszeichnungen
Nov. 2018 Preis für gute Lehre der Fachschaft Mathematik für das Sommersemester 2018: Platz 3 der besten Übungsbetriebe für "Modern Methods in Nonlinear Optimization"
Juni 2017 Preis für gute Lehre der Fachschaft Mathematik für das Wintersemester 2016/17: Platz 3 der besten Grundlagenvorlesungen für "Nichtlineare Optimierung: Grundlagen"
Okt. 2014 Forschungspreis des Fördervereins Konstruktiver Ingenieurbau der Universität der Bundeswehr München für eine herausragende Dissertation

Wintersemester 2023/24

TitelTermineDauerVortragende/r (Mitwirkende/r)
Vorkurs SoM+SoED en/InnenstadtLink2

Eine Liste früherer Lehrveranstaltungen finden Sie in TUMonline.

2023

  • Bruhse, Hendrik: Analysis and Applications of a Space-Time Finite Element Discretization of a Parabolic Problem. Masterarbeit, 2023 mehr…

2021

  • Kowalczyk, Julia: Generalisation properties of neural networks in optimal control. Masterarbeit, 2021 mehr…
  • Wirthl, Monika: Neural network based surrogate models for nonlinear advection terms of partial differential equations. Masterarbeit, 2021 mehr…

2020

  • Fritz, Tobias: Conditional value at risk optimization - analysis of robustness and stability (zusammen mit Allianz Global Investors GmbH). Masterarbeit, 2020 mehr…
  • Loncar, Fran Ante: Properties of data driven models in elasticity. Masterarbeit, 2020 mehr…
  • Scheerer, Almut: Analysis and finite element discretization of a shape optimization problem in measure spaces. Masterarbeit, 2020 mehr…
  • Wagner, Jakob: Higher Order Finite Elements for Sparse Initial Data Identification of Parabolic Problems. Masterarbeit, 2020 mehr…

2019

  • Emmermann, Nora: Reconstructing Optical Flow: An Optimal Control Framework. Bachelorarbeit, 2019 mehr…
  • Fischer, Simon: Zeitschrittverfahren für Optimalsteuerungsprobleme und ihre Verbindung zu Deep Learning. Bachelorarbeit, 2019 mehr…

2018

  • Stegmaier, Carmen: Learning of model parameters in image denoising. Bachelorarbeit, 2018 mehr…

2017

  • Berchtenbreiter, Benedikt: A new formulation for optimal control problems posed on nonconvex polygonal domains enforcing H2 regularity. Masterarbeit, 2017 mehr…
  • Huber, Andreas: FE-Analysis for PDE-constrained optimal control problems with tracking of the normal derivative. Masterarbeit, 2017 mehr…

2016

  • Schürholz, Klemens: hp-Finite Element Method for Fractional Diffusion. Masterarbeit, 2016 mehr…
  • Wagner, Philipp: Die nichtlineare Methode der kleinsten Quadrate: angepasste Lösungsalgorithmen und deren Anwendung bei Parameteridentifikationsproblemen. Bachelorarbeit, 2016 mehr…
  • Wude, Christian: Superkonvergenzeigenschaften für PDGL-beschränkte Optimalsteuerungsprobleme mit Mass-Lumping. Masterarbeit, 2016 mehr…

2022

  • Pfefferer, Johannes; Winkler, Max: Finite Element Approximations for PDEs with Irregular Dirichlet Boundary Data on Boundary Concentrated Meshes. Computational Methods in Applied Mathematics 0 (0), 2022 mehr… BibTeX Volltext ( DOI )

2019

  • Apel, Thomas; Mateos, Mariano; Pfefferer, Johannes; Rösch, Arnd: Superconvergent Graded Meshes for an Elliptic Dirichlet Control Problem. In: Lecture Notes in Computational Science and Engineering. Springer International Publishing, 2019 mehr… BibTeX Volltext ( DOI )
  • Hafemeyer, Dominik; Kahle, Christian; Pfefferer, Johannes: Finite element error estimates in \(L^2\) for regularized discrete approximations to the obstacle problem. Numerische Mathematik 144 (1), 2019, 133-156 mehr… BibTeX Volltext ( DOI )
  • Pfefferer, Johannes; Winkler, Max: Finite Element Error Estimates for Normal Derivatives on Boundary Concentrated Meshes. SIAM Journal on Numerical Analysis 57 (5), 2019, 2043-2073 mehr… BibTeX Volltext ( DOI )

2018

  • Antil, Harbir; Pfefferer, Johannes; Rogovs, Sergejs: Fractional operators with inhomogeneous boundary conditions: analysis, control, and discretization. Communications in Mathematical Sciences 16 (5), 2018, 1395-1426 mehr… BibTeX Volltext ( DOI )
  • Apel, Thomas; Mateos, Mariano; Pfefferer, Johannes; Rösch, Arnd: Error estimates for Dirichlet control problems in polygonal domains: Quasi-uniform meshes. Mathematical Control & Related Fields 8 (1), 2018, 217-245 mehr… BibTeX Volltext ( DOI )
  • Meidner, Dominik; Pfefferer, Johannes; Schürholz, Klemens; Vexler, Boris: hp-Finite Elements for Fractional Diffusion. SIAM Journal on Numerical Analysis 56 (4), 2018, 2345-2374 mehr… BibTeX Volltext ( DOI )

2017

  • Antil, Harbir; Pfefferer, Johannes; Warma, Mahamadi: A note on semilinear fractional elliptic equation: analysis and discretization. ESAIM: Mathematical Modelling and Numerical Analysis 51 (6), 2017, 2049-2067 mehr… BibTeX Volltext ( DOI )
  • Apel, Thomas; Winkler, Max; Pfefferer, Johannes: Error estimates for the postprocessing approach applied to Neumann boundary control problems in polyhedral domains. IMA Journal of Numerical Analysis 38 (4), 2017, 1984-2025 mehr… BibTeX Volltext ( DOI )

2016

  • Apel, Thomas; Nicaise, Serge; Pfefferer, Johannes: Discretization of the Poisson equation with non-smooth data and emphasis on non-convex domains. Numerical Methods for Partial Differential Equations 32 (5), 2016, 1433-1454 mehr… BibTeX Volltext ( DOI )

2015

  • Apel, Thomas; Mateos, Mariano; Pfefferer, Johannes; Rösch, Arnd: On the Regularity of the Solutions of Dirichlet Optimal Control Problems in Polygonal Domains. SIAM Journal on Control and Optimization 53 (6), 2015, 3620-3641 mehr… BibTeX Volltext ( DOI )
  • Apel, Thomas; Pfefferer, Johannes; Winkler, Max: Local mesh refinement for the discretization of Neumann boundary control problems on polyhedra. Mathematical Methods in the Applied Sciences 39 (5), 2015, 1206-1232 mehr… BibTeX Volltext ( DOI )
  • Neitzel, Ira; Pfefferer, Johannes; Rösch, Arnd: Finite Element Discretization of State-Constrained Elliptic Optimal Control Problems with Semilinear State Equation. SIAM Journal on Control and Optimization 53 (2), 2015, 874-904 mehr… BibTeX Volltext ( DOI )

2014

  • Apel, Thomas; Pfefferer, Johannes; Rösch, Arnd: Finite element error estimates on the boundary with application to optimal control. Mathematics of Computation 84 (291), 2014, 33-70 mehr… BibTeX Volltext ( DOI )
  • Apel, Thomas; Pfefferer, Johannes; Rösch, Arnd: Graded Meshes in Optimal Control for Elliptic Partial Differential Equations: An Overview. In: International Series of Numerical Mathematics. Springer International Publishing, 2014 mehr… BibTeX Volltext ( DOI )
  • Krumbiegel, Klaus.; Pfefferer, Johannes: Superconvergence for Neumann boundary control problems governed by semilinear elliptic equations. Computational Optimization and Applications 61 (2), 2014, 373-408 mehr… BibTeX Volltext ( DOI )

2011

  • Apel, Thomas; Pfefferer, Johannes; Rösch, Arnd: Finite element error estimates for Neumann boundary control problems on graded meshes. Computational Optimization and Applications 52 (1), 2011, 3-28 mehr… BibTeX Volltext ( DOI )

Wissenschaftliche Beiträge in Sammelbänden
Thomas Apel, Mariano Mateos, Johannes Pfefferer, Arnd Rösch:
Superconvergent graded meshes for an elliptic Dirichlet control problem.
Advanced Finite Element Methods with Applications - Proceedings of the 30th Chemnitz FEM Symposium 2017,
accepted, 2018.
Thomas Apel, Johannes Pfefferer, Arnd Rösch:
Locally refined meshes in optimal control for elliptic partial differential equations - an overview.
Trends in PDE Constrained Optimization: Günter Leugering, Peter Benner, Sebastian Engell, Andreas Griewank, Helmut Harbrecht, Michael Hinze, Rolf Rannacher, Stefan Ulbrich (ed.),
Springer Verlag, Basel, 2014. (doi:10.1007/978-3-319-05083-6_18)
Technical Reports und interne Forschungsberichte
H. Antil, J. Pfefferer:
A short Matlab implementation of fractional Poisson equation with nonzero boundary conditions.
Technical Report, 2017. (Code)
H.-D. Ließ, F. Loos, J. Pfefferer:
Berechnung der Erwärmung von Leiterbahnen.
Interner Forschungsbericht, 2010.
H.-D. Ließ, J. Pfefferer:
Widerstandsverlauf beim Trennen eines Flachleiters.
Interner Forschungsbericht, 2009.
Dissertation und Diplomarbeit
Numerical analysis for elliptic Neumann boundary control problems on polygonal domains
PhD Thesis, Universität der Bundeswehr München, 2014. (urn:nbn:de:bvb:706-3624)
Efficient recursive Formulation of Optimal Control Problems for Industrial Manipulators
Diploma Thesis, Technische Universität München, 2007.
Poster
Finite element error estimates for boundary control problems
6th Singular Days 2010, Berlin, 2010
Dirichlet boundary control problems: finite element discretization and error estimates
FEM-Symposium, Chemnitz, 2012

Vorträge auf Konferenzen
Finite element error estimates for PDEs with irregular Dirichlet boundary data using boundary concentrated meshes. Chemnitz Finite Element Symposium 2022, Herrsching, 09/2022.
Optimal control problems in non-convex domains with regularity constraints. International Congress on Industrial and and Applied Mathematics (ICIAM), Valencia, 07/2019.
Finite element error estimates in L 2 for regularized discrete approximations to the obstacle problem. Conference on the Mathematics of Finite Elements and Applications (MAFELAP), Brunel, 06/2019.
Optimal control problems in non-convex domains with regularity constraints. 11. Chemnitzer Seminar zur Optimalsteuerung 2019, Haus, 02/2019.
Optimal control problems in non-convex domains with regularity constraints. Oberwolfach Mini-Workshop: Numerical Analysis for Non-Smooth PDE-Constrained Optimal Control Problems (1851a), Oberwolfach, 12/2018.
Optimal control problems in non-convex domains with regularity constraints. 5th European Conference on Computational Optimization (EUCCO), Trier, 09/2018.
Optimal control problems in non-convex domains with regularity constraints. 28th IFIP TC7 Conference on System Modelling and Optimization, Essen, 07/2018.
Discretization error estimates for normal derivatives on boundary concentrated meshes. 28th IFIP TC7 Conference on System Modelling and Optimization, Essen, 07/2018.
Error estimates for normal derivatives on boundary concentrated meshes. 89th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), München, 03/2018.
hp-finite elements for fractional diffusion. 30th Chemnitz FEM Symposium 2017, Strobl, 09/2017.
Weighted finite element error estimates and its application to Dirichlet boundary control problems. IFIP WG 7.2 Workshop on Optimal Control of Partial Differential Equations, Castro Urdiales, 09/2017.
Different numerical aspects for Dirichlet boundary control problems. SIAM Conference on Control and Its Applications (SICON), Pittsburgh, 07/2017.
Numerical aspects and error estimates for Dirichlet boundary control problems. SIAM Conference on Optimization (SIOPT), Vancouver, 05/2017.
Adapted numerical methods for the Poisson equation with L^2 boundary data in non-convex domains. Conference on Computational Methods in Applied Mathematics (CMAM-7), Jyväskylä, 07/2016.
Adapted numerical methods for the Poisson equation with L^2 boundary data in non-convex domains. Conference on the Mathematics of Finite Elements and Applications (MAFELAP), Brunel, 06/2016.
Discretization error estimates for Dirichlet control problems in polygonal domains. Workshop on Numerical Methods for Optimal Control and Inverse Problems (OCIP), Garching, 03/2016.
Finite element error estimates for Dirichlet boundary control problems in polygonal domains. 27th IFIP TC7 Conference on System Modelling and Optimization, Sophia Antipolis, 06/2015.
Finite element error estimates for Dirichlet boundary control problems on polygonal domains. 86th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), Lecce, 3/2015.
Finite element error estimates for Dirichlet control problems in convex and non-convex domains. 6th International Conference on High Performance Scientific Computing, Hanoi, 03/2015.
Finite element error estimates on the boundary for elliptic boundary value problems with Neumann boundary data. 5th European Conference on Computational Mechanics, Barcelona, 07/2014.
Numerical analysis for semilinear elliptic optimal control problems with pointwise state constraints. Chemnitzer Seminar zur Optimalsteuerung, Haus, 02/2014.
On properties of discretized optimal control problems with semilinear elliptic equations and pointwise state constraints. European Numerical Mathematics and Advanced Applications, Lausanne, 08/2013.
Superconvergence properties of finite element discretized Neumann boundary control problems governed by semilinear elliptic equations. European Conference on Computational Optimization, Chemnitz, 07/2013.
Finite element error estimates for Neumann boundary control problems governed by semilinear elliptic equations. 84th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), Novi Sad, 03/2013.
Elliptic Neumann boundary control problems: FE error estimates for quasi-uniform and graded meshes. 5th International Conference on High Performance Scientific Computing, Hanoi, 03/2012.
Neumann boundary control of semilinear elliptic equations: finite element discretization and error estimates. 24th Chemnitz FEM Symposium 2011, Holzhau, 09/2011.
A finite element error estimate on the boundary and its application to Neumann boundary control problems. Workshop on Numerical Methods for Optimal Control and Inverse Problems (OCIP), Garching, 03/2011.
Finite element error estimates on the boundary and its application to optimal control. 23rd Chemnitz FEM Symposium 2010, Lichtenwalde, 09/2010.
Finite element error estimates for Neumann boundary control problems on graded meshes. 81st Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), Karlsruhe, 03/2010.
Finite element error estimates for Neumann boundary control problems on graded meshes. 24th IFIP TC7 Conference on System Modelling and Optimization, Buenos Aires, 07/2009.
L^2-error estimates on the boundary for the Neumann problem in 2D. Chemnitzer Seminar zur Optimalsteuerung, Gerlosberg, 03/2009.
Vorträge in Forschungsseminaren
Introduction to finite element error estimates for optimal control problems with PDEs, Departement Mathematik und Informatik, Universität Basel, 04/2022.
hp-finite elements for fractional diffusion. Oberseminar Numerische Mathematik, Optimierung und Dynamische Systeme, Universität Bayreuth, 01/2020.
hp-finite elements for fractional diffusion. Forschungsseminar Optimale Steuerung und Inverse Probleme, Universität Duisburg-Essen, 04/2019.
hp-finite elements for fractional diffusion. Research Seminar: Mathematics of Computation, Rheinische Friedrich-Wilhelms-Universität Bonn, 09/2018.
hp-finite elements for fractional diffusion. Seminar Mathematical Optimization / Non-smooth Variational Problems and Operator Equations, WIAS Berlin, 06/2018.
Error estimates for normal derivatives on boundary concentrated meshes. Applied and Computational Mathematics Seminar, George Mason University, 02/2018.
hp-Finite Elements for Fractional Diffusion. Forschungsseminar Numerik, TU Chemnitz, 11/2017.
Spectral fractional operators with inhomogeneous boundary conditions, Technische Universität München, 03/2017.
An introduction to PDEs involving the spectral fractional Laplacian, Technische Universität München, 03/2017.
On properties of finite element discretized Dirichlet control problems in polygonal domains. Ecole polytechnique Paris, 12/2016.
Finite element error estimates for Dirichlet boundary control problems in polygonal domains. Applied and Computational Mathematics Seminar, George Mason University, 08/2016.
On properties of finite element discretized Dirichlet control problems in polygonal domains. Forschungsseminar Optimale Steuerung und Inverse Probleme, Universität Duisburg-Essen, 06/2016.
An introduction to PDEs involving the fractional Laplacian: analysis and finite element approximations. Seminar Angewandte Analysis und Numerische Mathematik, TU Graz, 04/2016.
An introduction to PDEs involving the fractional Laplacian: analysis and finite element approximations. Universität der Bundeswehr München, 03/2016.
Numerical analysis for Neumann boundary control problems governed by semilinear elliptic equations in polygonal domains. Numerical Analysis Seminar, University of Maryland, 12/2015.
Finite element error estimates for semilinear elliptic Neumann boundary control problems in polygonal domains. Applied and Computational Mathematics Seminar, George Mason University, 11/2015.
Discretization error estimates for Dirichlet boundary control problems. Seminar Angewandte Analysis und Numerische Mathematik, TU Graz, 05/2015.
Abschätzung des Diskretisierungsfehlers bei Dirichlet-Randsteuerungsproblemen. Forschungsseminar Numerik, TU Chemnitz, 05/2015.
Graded meshes in optimal control of elliptic partial differential equations. Forschungsseminar Optimale Steuerung und Inverse Probleme, Universität Duisburg-Essen, 06/2014.
Abschätzung des FE-Fehlers für semilineare Neumannrandsteuerungsprobleme. Kolloquium Angewandte Mathematik, Universität der Bundeswehr München, 02/2012.
Abschätzung des FE-Fehlers für semilineare Neumannrandsteuerungsprobleme. Forschungsseminar Nichtlineare Optimierung, Universität Duisburg-Essen, 01/2012.
L^2-error estimates on the boundary for the Neumann problem with application to optimal control. Seminar Nichtlineare Optimierung und Inverse Probleme, WIAS Berlin, 11/2010.
Effiziente rekursive Formulierung von Optimalsteuerungsproblemen für Industrieroboter. Kolloquium Wissenschaftliches Rechnen, Universität der Bundeswehr München, 11/2007.