- Domain wall fluctuations of the six-vertex model at the ice point. Journal of Physics A: Mathematical and Theoretical 57 (2), 2023, 025001 more…
- Fluctuations in the Discrete TASEP with Periodic Initial Configurations and the Airy1 Process. International Mathematics Research Papers, 2010 more…
- Maximum of Dyson Brownian motion and non-colliding systems with a boundary. Electronic Communications in Probability 14 (none), 2009 more…
- The Airy1 Process is not the Limit of the Largest Eigenvalue in GOE Matrix Diffusion. Journal of Statistical Physics 133 (3), 2008, 405-415 more…
- Fluctuation Properties of the TASEP with Periodic Initial Configuration. Journal of Statistical Physics 129 (5-6), 2007, 1055-1080 more…
- Stochastic growth in one dimension and Gaussian multi-matrix models. XIVth International Congress on Mathematical Physics, WORLD SCIENTIFIC, 2006 more…
- Exact Scaling Functions for One-Dimensional Stationary KPZ Growth. Journal of Statistical Physics 115 (1/2), 2004, 255-279 more…
- Fluctuations of an atomic ledge bordering a crystalline facet. Physical Review E 69 (3), 2004 more…
- Stochastic Surface Growth. Dissertation, LMU München. 2003 more…
- Current Fluctuations for the Totally Asymmetric Simple Exclusion Process. In: In and Out of Equilibrium. Birkhäuser Boston, 2002 more…
- Scale Invariance of the PNG Droplet and the Airy Process. Journal of Statistical Physics 108 (5/6), 2002, 1071-1106 more…
- Statistical self-similarity of one-dimensional growth processes. Physica A: Statistical Mechanics and its Applications 279 (1-4), 2000, 342-352 more…
- Universal Distributions for Growth Processes in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mn>1</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:math>Dimensions and Random Matrices. Physical Review Letters 84 (21), 2000, 4882-4885 more…
- An exactly solved model of three-dimensional surface growth in the anisotropic KPZ regime. Journal of Statistical Physics 88 (5-6), 1997, 999-1012 more…
- Bounds on the diffusion constant for the Rubinstein-Duke model of electrophoresis. Physica A: Statistical Mechanics and its Applications 233 (1-2), 1996, 191-207 more…
Dr. rer. nat. Michael Prähofer
Technische Universität München
Lehrstuhl für Mathematische Physik (Prof. Wolf)
Postadresse
Postal:
Boltzmannstr. 3
85748 Garching b. München
- Tel.: +49 (89) 289 - 17008
- Raum: 5612.03.059
- michael.praehofer(at)tum.de
- TUMonline-Beauftragter - Departmentsicherheitsbeauftragter Mathematik
Wintersemester 2024/25
A list of previous courses can be found on TUMonline. |
Surface growth |
Equilibrium crystal shapes |
Random matrices |
Integrable Systems |
KPZ tables for the stationary two-point function |
Ogl learns walking |