19.05.2025 14:15 Teemu Pennanen (King's College London): Optimal Operation and Valuation of Electricity Storages
We apply computational techniques of convex stochastic optimization to optimal operation and valuation of electricity storages in the face of uncertain electricity prices. Our approach is based on quadrature approximations of Markov processes and on the Stochastic Dual Dynamic Programming (SDDP) algorithm which is widely applied across the energy industry. The approach is applicable to various specifications of storages, and it allows for e.g. hard constraints on storage capacity and charging speed. Our valuations are based on the indifference pricing principle, which builds on optimal trading strategies and calibrates to the user's initial position, market views and risk preferences. We illustrate the effects of storage capacity and charging speed by numerically computing the valuations using stochastic dual dynamic programming. If time permits, we provide theoretical justification of the employed computational techniques.
Quelle
23.06.2025 14:00 Jae Youn Ahn (Ewha Womans University, Korea): Interpretable Generalized Coefficient Models Integrating Deep Neural Networks within a State-Space Framework for Insurance Credibility
Credibility methods in insurance provide a linear approximation, formulated as a weighted average of claim history, making them highly interpretable for estimating the predictive mean of the a posteriori rate. In this presentation, we extend the credibility method to a generalized coefficient regression model, where credibility factors—interpreted as regression coefficients—are modeled as flexible functions of claim history. This extension, structurally similar to the attention mechanism, enhances both predictive accuracy and interpretability. A key challenge in such models is the potential issue of non-identifiability, where credibility factors may not be uniquely determined. Without ensuring the identifiability of the generalized coefficients, their interpretability remains uncertain. To address this, we first introduce a state-space model (SSM) whose predictive mean has a closed-form expression. We then extend this framework by incorporating neural networks, allowing the predictive mean to be expressed in a closed-form representation of generalized coefficients. We demonstrate that this model guarantees the identifiability of the generalized coefficients. As a result, the proposed model not only offers flexible estimates of future risk—matching the expressive power of neural networks—but also ensures an interpretable representation of credibility factors, with identifiability rigorously established. This presentation is based on joint work with Mario Wuethrich (ETH Zurich) and Hong Beng Lim (Chinese University of Hong Kong).
Quelle
21.07.2025 14:00 Johannes Wiesel, University Copenhagen : TBA
TBA
Quelle